
September 1999 The Delphi Magazine 49

Porting KillerApp
by Andrew McLellan

Now that Delphi 5 is imminent,
the time for Porting The Killer

Application is once again upon us.
Having been through this process
with every version of Pascal and
Delphi for the last fifteen years, I
think I know how to do it now. And
besides, last time I made notes!

There is a temptation to install
the new shiny version of Delphi,
open KillerApp in the new shiny
version and hit F9, but such is the
road to disaster. This requires a
little planning.

First, back up your development
folder. All of it, not just the files and
extensions that look interesting.

Now install Delphi 5. Continue
resisting the urge to open
KillerApp, open the help file and
look for Compatibility Issues or
What’s New in the contents. Read-
ing this will warn you of anything
that will definitely be broken.
Sobbing quietly, close Delphi 5 and
re-open Delphi x.

Next identify all third party code
in use by your application: all
bought in, shareware and freeware
libraries and components. If there
are any for which you don’t have
the source, then the whole porting
exercise is a non-starter. Although
Borland claimed with Delphi 1 that
the DCU version incompatibility
problem that has plagued us for
years would go away, it hasn’t. I
personally don’t find this to be a
bad thing, the annual housekeep-
ing that this forces on us is good
practice and, in any case, I would
not use anything for which I didn’t
have the source.

After this, create a new applica-
tion, PortTest, with your existing
copy of Delphi and include every
unit from all the libraries not pro-
duced in-house. On the form, drop
one of every component used by
KillerApp. Build this application
(use Build All).

Now make a complete copy of
your entire development folder.
Then fire up Explorer and delete
every DCU in your development

folder. (If you’re paranoid, rebuild
KillerApp at this point, just to be
sure, then delete the DCUs again).
Delphi has an annoying habit of
finding source code in the wrong
folder, even when told explicitly
where to find a unit.

Ladies and gentlemen, you may
now start Delphi 5. Open PortTest
in the new folder and do File |
Build All. It won’t. And even if it
does, the list of hints and warnings
will have grown. Decision time: if
you decide that the benefits of
using TWhizzyEdit in place of the
standard TEdit don’t justify the
extra work required to port it, then
make the change in Delphi x and
not Delphi 5: you will be working in
an environment you know and with
code you understand.

You can just open KillerApp in
Delphi x, delete all instances of
TWhizzyEdit and replace them with
TEdits, but it’s easier to do this by
editing the DFMs directly: open
each form with a TWhizzyEdit,
press Alt-F12, search for TWhizzy-
Edit and replace it with TEdit. This
leaves all the working properties
and event handlers in place, and
recompiling shows you all the code
that has been broken by the
change. When KillerApp finally
recompiles in Delphi x, manually
sift through each form looking for
any methods, procedures or func-
tions without the dots to the left
indicating that the code hasn’t
been compiled into your applica-
tion. Now would be a good time to
test it is all still working.

Now make another complete
copy of your entire development
folder. Fire up Explorer and delete
every DCU in your development
folder: just to make sure Delphi
doesn’t find the wrong file.

At this point, you should be rea-
sonably sure that anything you
didn’t write is going to port even if it
doesn’t work. Now for your own
code. Open up KillerApp in the new
folder and create a new unit in the
project:

Unit PortIt;
Interface
Const
TODO = FALSE;

Implementation
End.

Build KillerApp. If anything doesn’t
compile, either correct the code
immediately, commenting the
change with // Delphi5, so that
you can find it again, or comment
out the code, replacing it with
Assert(TODO) and including the
unit PortIt.

Fire up Explorer and check that
no DCUs have appeared in your
development folder. If they have,
then you are compiling a mixture
of source code in your copy folder
and your development folder. Use
the Project Manager to explicitly
include units from the copy folder:
if Things.DCU has appeared in the
development folder, then any unit
that uses Things.Pas needs to be
added.

Once again build KillerApp. If
anything doesn’t compile, either
correct the code immediately,
commenting the change with
// Delphi5, so that you can find it
again, or comment out the code,
replacing it with Assert(TODO) and
including the unit PortIt.

KillerApp now compiles, but
isn’t going to work until you’ve
replaced all the commented-out
code. Searching all the files in the
project for PortIt will show you
which units have problems. Com-
menting out the line TODO = FALSE in
PortIt and rebuilding will take you
to each line which needs attention.
Comment every change with
// Delphi 5. Only when you can
remove PortIt from your applica-
tion altogether do you have any
chance that KillerApp is going to
run.

Finally, test it rigorously!
I don’t yet know what’s new in

Delphi 5, but I am sure it will break
some existing code. And I look
forward to finding out what.

Andrew McLellan is Principal
Developer at Epoch Software and
the author of Rapidocs. You can
contact him at andrew@cix.co.uk


